Palladium-Catalyzed [3 + 3] Cycloaddition of Trimethylenemethane with Azomethine Imines

Ryo Shintani and Tamio Hayashi*
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Received March 9, 2006; E-mail: thayashi@kuchem.kyoto-u.ac.jp

Intermolecular cycloaddition reactions are powerful methods for the convergent construction of cyclic materials from relatively simple organic fragments, and achieving such transformations by the use of transition-metal catalysts is highly desirable in view of efficiency of the process and mildness of the reaction conditions. For the construction of six-membered cyclic compounds, [4 +2] cycloadditions (e.g., the Diels-Alder reactions) are most widely used in the literature. ${ }^{1}$ An alternative approach is the use of $[2+$ $2+2$] cycloaddition reactions as often used in the preparation of aromatic ring systems. ${ }^{2}$ Although a $[3+3]$ cycloaddition strategy is another legitimate approach toward the formation of sixmembered rings, it has been much less studied ${ }^{3}$ and only a few examples of transition-metal-catalyzed [3+3] cycloadditions have been reported to date. ${ }^{4,5}$ Here we describe the development of a new palladium-catalyzed $[3+3]$ cycloaddition of trimethylenemethane (TMM) with azomethine imines to produce highly functionalized hexahydropyridazine derivatives under simple and mild conditions (eq 1).

In 1979, Trost reported the use of $\mathrm{Pd}-\mathrm{TMM}$ complexes in the context of $[3+2]$ cycloaddition reactions. ${ }^{6}$ Since then, he has made a significant contribution to the development of this attractive chemistry, showing the high utility of $\mathrm{Pd}-\mathrm{TMM}$ complexes as a source of a three-carbon unit in a cyclic framework. ${ }^{7,8}$ On the other hand, their use in $[3+3]$ cycloadditions is very limited. To the best of our knowledge, they have only been used in the couplings with aziridines to furnish piperidine derivatives so far. ${ }^{5}$

1-Alkylidene-3-oxopyrazolidin-1-ium-2-ides (e.g., $\mathbf{2}$ in eq 1), developed by Dorn and Otto in 1968, ${ }^{9}$ are isolable and stable azomethine imines and have been used as 1,3-dipoles in the context of $[3+2]$ cycloadditions, giving five-membered nitrogen-containing heterocycles. ${ }^{10,11}$ Unfortunately, however, these useful 1,3dipoles have never been engaged in a single-step formation of sixmembered rings to date. ${ }^{12}$

Initially, we examined the reaction of (2-(acetoxymethyl)-2propenyl)trimethylsilane (1) with azomethine imine 2a in the presence of a catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ at $40^{\circ} \mathrm{C}$ (Table 1) and found that the choice of solvent has a significant impact on the reaction progress. Thus, desired $[3+3]$ cycloadduct $3 \mathbf{3}$ was obtained in high yield by the use of dichloromethane (82% yield; entry 5) in contrast to any other solvents we employed (entries 1-4). We also found that the use of $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ or $\mathrm{CpPd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) /$ PPh_{3} as a catalyst in dichloromethane produced cycloadduct 3a in comparably high yield ($77-82 \%$ yield; entries 6 and 7).

We have subsequently determined that the scope of the azomethine imine is fairly broad. Thus, with respect to the substituent on

Table 1. $[3+3]$ Cycloaddition of (2-(Acetoxymethyl)-2-propenyl)trimethylsilane (1) with Azomethine Imine 2a

entry	Pd catalyst	solvent	yield (\%) ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	toluene	<2
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	MeOH	<2
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF	14
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	57
5	$\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$82(81)^{b}$
6	$\mathrm{Pd}(\mathrm{OAc})_{2} / 4 \mathrm{PPh}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	82
7	$\mathrm{CpPd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) / 4 \mathrm{PPh}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	77

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR against an internal standard $\left(\mathrm{MeNO}_{2}\right)$. ${ }^{b}$ Isolated yield in parentheses.

Table 2. Palladium-Catalyzed $[3+3]$ Cycloaddition: Scope of Azomethine Imines

${ }^{a}$ Isolated yield.
the alkylidene portion, a variety of aryl groups (Table 2, entries $1-6$) as well as heteroaryl and alkenyl groups (entries 7 and 8) can be tolerated, furnishing [$3+3]$ cycloadducts in high yield ($70-92 \%$ yield). Unfortunately, substrates with an alkyl substituent are less effective for this $[3+3]$ cycloaddition (entry 9).

Azomethine imines bearing substituents on the pyrazolidinone ring can also be used in the present $[3+3]$ cycloaddition reaction with high efficiency. For example, 4,4-dimethyl-substituted dipole $\mathbf{2} \mathbf{j}$ provides corresponding cycloadduct $\mathbf{3} \mathbf{j}$ in 94% yield (eq 2). In addition, 5 -methyl-substituted dipole $\mathbf{2 k}$ is converted to the sixmembered heterocycle $\mathbf{3 k}$ not only in high yield (87%) but also with high diastereoselectivity ($\mathrm{dr}=96 / 4$; eq 3). The relative configuration of the major diastereomer was determined by X-ray crystallographic analysis, as shown in Figure 1.

We have also examined the reactions using substituted TMM precursors in combination with azomethine imine 2a. Thus,

Figure 1. ORTEP illustration of $\mathbf{3 k}$ with thermal ellipsoids drawn at the 50% probability level (hydrogen atoms on the methyl and phenyl groups are omitted for clarity).

compound 4 mainly furnished two different products, $\mathbf{3 1}$ and $\mathbf{3 m}$, along with a minute amount of product $\mathbf{3 n}(\mathbf{3 1} / \mathbf{3 m} / \mathbf{3 n}=77 / 20 / 3$; eq 4). In contrast, the use of structural isomer 5 generated $3 n$ as the major product with a small amount of $\mathbf{3 1}(\mathbf{3 1} / \mathbf{3 m} / \mathbf{3 n}=12 / 1 / 87$; eq 5). These results show that the substitution pattern of the TMM precursor is reflected in the product distribution in the present [3 +3] cycloaddition with azomethine imine $\mathbf{2 a}$, indicating that the cycloaddition occurs without significant equilibration between intermediates 6 and 7 (Scheme 1). This observation strikingly contrasts to the palladium-catalyzed [3+2] cycloadditions of $\mathbf{4}$ or 5 with electron-deficient olefins described by Trost, which preferentially afford five-membered cyclic compounds derived from intermediate 7 regardless of the starting TMM precursor (4 or 5) due to the fast equilibration between 6 and 7 prior to the cycloaddition. ${ }^{13}$

Scheme 1

These $[3+3]$ cycloaddition reactions can be extended to the couplings with nitrones, as well. For example, a reaction of nitrone
$\mathbf{8}$ with TMM precursor $\mathbf{1}$ provides corresponding cycloadduct $\mathbf{9}$ in 91% yield (eq 6).

In summary, we have developed a palladium-catalyzed $[3+3]$ cycloaddition of trimethylenemethane with azomethine imines to produce hexahydropyridazine derivatives under mild conditions. The use of substituted TMM precursors highlights the difference of this system from previously reported $[3+2]$ cycloaddition of TMMs under palladium catalysis. We have also described that the present $[3+3]$ cycloadditions are applicable to couplings with nitrones.

Acknowledgment. Support has been provided in part by a Grant-in-Aid for Scientific Research, the Ministry of Education, Culture, Sports, Science and Technology, Japan (21 COE on Kyoto University Alliance for Chemistry).

Supporting Information Available: Experimental procedures and compound characterization data (PDF) and X-ray data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Dennis, N. Org. React. Mech. 2004, 499. (b) Fringuelli, F.; Taticchi, A. The Diels-Alder Reaction: Selected Practical Methods; John Wiley \& Sons: Chichester, U.K., 2002. (c) Frühauf, H.-W. Chem. Rev. 1997, 97, 523. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
(2) (a) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741. (b) Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787. (c) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.
(3) For reviews on formal $[3+3]$ cycloadditions, see: (a) Hsung, R. P.; Wei, L.-L.; Sklenicka, H. M.; Shen, H. C.; McLaughlin, M. J.; Zehnder, L. R. Trends Heterocycl. Chem. 2001, 7, 1. (b) Harrity, J. P. A.; Provoost, O. Org. Biomol. Chem. 2005, 3, 1349. See also: (c) van der Louw, J.; van der Baan, J. L.; Out, G. J. J.; de Kanter, F. J. J.; Bickelhaupt, F.; Klumpp, G. W. Tetrahedron 1992, 48, 9901. (d) Ganton, M. D.; Kerr, M. A. J. Org. Chem. 2004, 69, 8554.
(4) (a) Huang, Y.; Lu, X. Tetrahedron Lett. 1987, 28, 6219. (b) Huang, Y.; Lu, X. Tetrahedron Lett. 1988, 29, 5663. (c) Barluenga, J.; Tomás, M.; Rubio, E.; López-Pelegrín, J. A.; García-Granda, S.; Priede, M. P. J. Am. Chem. Soc. 1999, 121, 3065. (d) Young, I. S.; Kerr, M. A. Angew. Chem., Int. Ed. 2003, 42, 3023. (e) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764.
(5) (a) Bambal, R. B.; Kemmitt, R. D. W. J. Organomet. Chem. 1989, 362, C18. (b) Hedley, S. J.; Moran, W. J.; Prenzel, A. H. G. P.; Price, D. A.; Harrity, J. P. A. Synlett 2001, 1596. (c) Hedley, S. J.; Moran, W. J.; Price, D. A.; Harrity, J. P. A. J. Org. Chem. 2003, 68, 4286. (d) Goodenough, K. M.; Moran, W. J.; Raubo, P.; Harrity, J. P. A. J. Org. Chem. 2005, 70, 207.
(6) (a) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1979, 101, 6429. (b) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, 105, 2315.
(7) For a review, see: Chan, D. M. T. In Cycloaddition Reactions in Organic Synthesis; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; p 57.
(8) For examples of $[4+3]$ cycloaddition with Pd-TMM, see: (a) Trost, B. M.; MacPherson, D. T. J. Am. Chem. Soc. 1987, 109, 3483. (b) Trost, B. M.; Schneider, S. Angew. Chem., Int. Ed. Engl. 1989, 28, 213. (c) Trost, B. M.; Christopher, M. M. J. Am. Chem. Soc. 1993, 115, 6636. For an example of $[6+3]$ cycloaddition with Pd-TMM, see: (d) Trost, B. M.; Seoane, P. R. J. Am. Chem. Soc. 1987, 109, 615.
(9) (a) Dorn, H.; Otto, A. Chem. Ber. 1968, 101, 3287. (b) Dorn, H.; Otto, A. Angew. Chem., Int. Ed. Engl. 1968, 7, 214.
(10) For a review, see: Schantl, J. G. Sci. Synth. 2004, 27, 731.
(11) For recent examples, see: (a) Suárez, A.; Downey, C. W.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11244. (b) Pezdirc, L.; Jovanovski, V.; Bevk, B.; Jakse, R.; Pirc, S.; Meden, A.; Stanovnik, B.; Svete, J. Tetrahedron 2005, 61, 3977. (c) Panfil, I.; Urbanczyk-Lipkowska, Z.; Suwinska, K.; Solecka, J.; Chmielewski, M. Tetrahedron 2002, 58, 1199.
(12) Self-dimerization of these dipoles is known: Dorn, H.; Kreher, T. Tetrahedron Lett. 1988, 29, 2939.
(13) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1981, 103, 5972. JA061662C

